Tree-Based Credal Networks for Classification

نویسندگان

  • Marco Zaffalon
  • Enrico Fagiuoli
چکیده

Bayesian networks are models for uncertain reasoning which are achieving a growing importance also for the data mining task of classification. Credal networks extend Bayesian nets to sets of distributions, or credal sets. This paper extends a state-of-the-art Bayesian net for classification, called tree-augmented naive Bayes classifier, to credal sets originated from probability intervals. This extension is a basis to address the fundamental problem of prior ignorance about the distribution that generates the data, which is a commonplace in data mining applications. This issue is often neglected, but addressing it properly is a key to ultimately draw reliable conclusions from the inferred models. In this paper we formalize the new model, develop an exact linear-time classification algorithm, and evaluate the credal netbased classifier on a number of real data sets. The empirical analysis shows that the new classifier is good and reliable, and raises a problem of excessive caution that is discussed in the paper. Overall, given the favorable trade-off between expressiveness and efficient computation, the newly proposed classifier appears to be a good candidate for the wide-scale application of reliable classifiers based on credal networks, to real and complex tasks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upper entropy of credal sets. Applications to credal classification

We present an application of the measure of entropy for credal sets: as a branching criterion for constructing classification trees based on imprecise probabilities which are determined with the imprecise Dirichlet model. We also justify the use of upper entropy as a global uncertainty measure for credal sets and present a deduction of this measure. We have carried out several experiments in wh...

متن کامل

Imprecise Probabilistic Graphical Models: Equivalent Representations, Inference Algorithms and Applications

Credal networks are probabilistic graphical models that extend Bayesian nets to deal with imprecision in probability, and can actually be regarded as sets of Bayesian nets. Credal nets appear to be powerful means to represent and deal with many important and challenging problems in uncertain reasoning. The counterpart of having more freedom in the modeling phase is an increased inferential comp...

متن کامل

Approximate Inference in Credal Networks by Variational Mean Field Methods

Graph-theoretical representations for sets of probability measures (credal networks) generally display high complexity, and approximate inference seems to be a natural solution for large networks. This paper introduces a variational approach to approximate inference in credal networks: we show how to formulate mean field approximations using naive (fully factorized) and structured (tree-like) s...

متن کامل

Bayesian Networks with Imprecise Probabilities: Theory and Application to Classification

Bayesian network are powerful probabilistic graphical models for modelling uncertainty. Among others, classification represents an important application: some of the most used classifiers are based on Bayesian networks. Bayesian networks are precise models: exact numeric values should be provided for quantification. This requirement is sometimes too narrow. Sets instead of single distributions ...

متن کامل

Credal Sum-Product Networks

Sum-product networks are a relatively new and increasingly popular class of (precise) probabilistic graphical models that allow for marginal inference with polynomial effort. As with other probabilistic models, sum-product networks are often learned from data and used to perform classification. Hence, their results are prone to be unreliable and overconfident. In this work, we develop credal su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Reliable Computing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2003